
Canadian Journal of Pure and Applied Sciences 
Vol. 13, No. 2, pp. 4765-4772, June 2019 
Online ISSN: 1920-3853; Print ISSN: 1715-9997 
Available online at www.cjpas.net 

 
 

 
A NONLINEAR MINIMIZATION CALCULATION OF THE RENORMALIZED 

FREQUENCY ෥࣓  IN DIRTY d-WAVE SUPERCONDUCTORS 
 

*Pedro Contreras1 and Juan Moreno2 
1Departamento de Fisica and Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela 

2Facultad de Ingenieria, Universidad de la Empresa, Montevideo 11300, Uruguay  
 

ABSTRACT 
 
This work performs a comparative numerical study of the impurity average self-frequency ෥߱ in an unconventional 
superconducting alloy with non-magnetic impurities. Two methods are used: the Levenberg-Marquardt algorithm as a 
nonlinear minimization problem, and a fixed-point iteration procedure. The unconventional superconducting 
renormalized by impurities ෥߱ is a self-consistent complex nonlinear equation with two varying parameters: the impurity 
concentration Γ+ and the strength of the impurities c, for which its numerical solution is a computational challenge. This 
study uses an order parameter that corresponds to the high-temperature superconducting ceramics (HTS) with a well-
established gap symmetry. The results reveal the computational efficiency of the non-linear minimization technique by 
improving the calculations of the ෥߱ computation when using a two-dimensional parameter space (Γ+, c), particularly in 
the unitary regime, where the imaginary part of ෥߱ is a complicated expression of those parameters; this allows to 
enhance the study of the universal behavior of this particular quantum mechanical state. 
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INTRODUCTION  
 
The effect caused by nonmagnetic impurities in 
unconventional superconductors play a fundamental role 
in the understanding of their physical properties when 
these materials are doped. We use an order parameter well 
established for the high-temperature superconductors 
(HTS) (Maeno et al., 1994). Superconducting ceramics 
have a transition temperature Tc close to the boiling point 
of liquid Nitrogen: TNi = – 195.79 degrees Celsius 
(Bergemann et al., 2003). Although these materials are 
fragile in their elastic properties, they aim to revolutionize 
the technology of electrical conduction without energy 
loss (Kamerlingh Onnes, 1911a, 1911b, 1911c). In 
particular, these materials lose their superconducting 
properties as soon as nonmagnetic impurities are added. 
For example, for YBCO ceramics doped with Zn 
impurities, the transition temperature Tc begins to 
decrease rapidly (Maeno et al., 1994).  
 
We know that for the HTS, the energy gap corresponds to 
a paired singlet quantum state with a dx2−y2symmetry, for 
example, in hole-doped cuprate superconductors such as 
YBa2Cu3O7 and Tl2Ba2CuO6 (Tsuei and Kirtley, 2000; 
Annett, 1995). The superconducting gap for this 

symmetry has lines nodes on the Fermi surface, and the 
energy gap corresponds to the one-dimensional 
irreducible representation B1g of the tetragonal point 
symmetry group D4h. They are called d-wave 
superconductors and they have elastic impurity scattering 
preserving the total kinetic energy. The d-wave gap 
changes sign as a function of the azimuthal angle θ with 
line nodes in the energy spectra as it is illustrated in 
Figure 1.  
 
The task of this work is to obtain the solution of the 
equation for ෥߱ for a wide range of (Γ+, c) parameters. 
This complex nonlinear two-dimensional equation is very 
difficult to solve by conventional iterative algorithms. 
Instead of that, in this work we solve ෥߱ using two 
numerical routines; throughout this study ෥߱ is the 
renormalized frequency, γ represents the inverse of the 
residual average lifetime τ at zero frequency, and N/N0 is 
the normalized superconducting density of states (DOS). 
We calculate and studied the DOS at low energies. The 
DOS gives insight information about the temperature 
behavior of some relevant thermodynamic and kinetic 
quantities in unconventional superconductors that are 
experimentally measured such as the specific electronic 
heat C(T), the thermal conductivity κij(T) and the sound 
attenuation αij(T) (Contreras et al., 2004; Contreras, 2011; 
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Contreras et al., 2014). These measurements help to clear 
up the structure of the gap symmetry. 
 
This work consists of five sections. The first section 
introduces the subject of the dirty d-wave (HTS) and 
limits our study to a spherical (isotropic) Fermi surface 
with a line-nodes order-parameter of the one-dimensional 
representation B1g of the tetragonal group D4h. The second 
section explains shortly the ෥߱ formalism given by Mineev 
and Samokhin (1999), and also follows the approach by 
Schachinger and Carbotte (2003) that does some of these 
numerical calculations in a different physical context (the 
residual absorption at zero temperature of the optical 
spectral weight). Briefly, we derive and explain equations 
(2) and (4) and refer the readers to these two references 
for further details. The third section briefly introduces and 
explains the way the two algorithms work and their main 
differences (the implementation advantages and/or 
disadvantages). The fourth section presents the numerical 
solutions of equations (2) and (4) by comparing the fixed-
point iteration procedure and the nonlinear minimization 
algorithm. The fifth section performs a numerical 
evaluation of the normalized DOS in the unitary and Born 
regimes. The calculation of the low energy DOS is crucial 
for the impurity case, because it shows the limit which 
belongs to the HTS d-wave superconductors. We 
conclude with a summary of the main results and some 
final thoughts are provided for some further research.  
 

 
 
Fig. 1. The dx2−y2 gap for the one-dimensional irreducible 
representation B1g of the tetragonal point symmetry group 
D4h for a spherical Fermi surface.  
 

THE ෥࣓  FORMALISM FOR NONMAGNETIC 
IMPURITIES  
 
In the case of unconventional superconductors with a 
singlet pairing state such as the HTS, when nonmagnetic 
impurities effects are added, the interaction Hamiltonian 
between impurities and Cooper pairs is given by the 
following expression:  
 
ܪ = ଴ܷ ∑ ܿ̂௙ାܿ̂௜௜,௝ (1) 

 
where U0 is the interaction potential, ܿ̂௜ and ܿ̂௙ା are the 
annihilation and creation operators of the Cooper pairs. 
When multiple elastic scattering of a Cooper pair occurs 
(Mineev and Samokhin, 1999; Smith and Walker, 2000; 
Landau and Lifshitz, 1965); the ෥߱ is not only given in the 
Born limit (weak potential with U0≪ 1 and a Cooper pair 
scattered by one impurity). Instead, a Cooper pair scatters 
many impurities (strong Coulomb interaction with U0≫ 
1) and the calculation of the equation for the ෥߱ that has to 
be done in the unitary regime. However, the fixed-point 
method has problems in finding a proper ෥߱.  
 
We consider the important case of weak disorder 
(restricting our calculation more). It means that at 
sufficiently low concentration of impurities, the condition 
kfl≫ 1 (l is the mean free path) prevails and the crossed 
Feynman diagrams are ignored. Physically, this means 
that there is no interference between scattered waves 
having different probability amplitudes (Mineev and 
Samokhin, 1999; Edwards, 1961; Lussier et al., 1996; 
Landau and Lifshitz, 1965; Puchkaryov and Maki, 1998).  
 
We further consider the dimensionless Planck units (ћ = c 
= kB = 1) for the whole calculation. Nerveless, the 
renormalized frequency ෥߱ does not depend on the angle 
because of the elastic impurity scattering changes. The 
elastic scattering is the only scattering process taken into 
account in our work. The dimensionless self-consistent 
frequency equation for ෥߱ in a t-matrix approximation is 
(Mineev and Samokhin, 1999; Schachinger and Carbotte, 
2003):  
 
෥߱(߱) = ߱ + Γାߨ݅ 〈௚(ఏ,ఠ෥ )〉ಷೄ

௖మା〈௚(ఏ,ఠ෥ )〉ಷೄ
మ     (2) 

 
In equation (2), the imaginary term is the self-energy 
renormalized for nonmagnetic doped impurities Σimp( ෥߱) 
and the Fermi averaged expression for g( ෥߱) is  
 
݃( ෥߱) = 〈 ఠ෥

ఠ෥ మା|୼|మ
〉ிௌ   (3) 

 
In equation (2), the parameter c = 1/(πNFU0) and the 
parameter Γ+ = nimp/(πNF). For very low frequencies (ω → 
0), ෥߱ = iγ and γ becomes equal to  
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,Γା)ߛ ܿ) = Γାߨ ௚(௜ఊ)
௖మା௚మ(௜ఊ)

   (4) 
 
where  
 
(ߛ݅)݃ = 〈 ఊ

ఊమା|୼|మ
〉ிௌ (5) 

 
We call equation (4) the transcendental equation of the 
residual average lifetime at zero frequency with γ = 1/τ(0). 
According to equation (2), we know that γ depends on 
both Γ+ and c. So, first we solve and analyze this 
dependency numerically for equation (4). 
 
We write the imaginary part of equation (2) as Im[ ෥߱(ω)] 
= 1/τ(ω), where τ(ω) represents the average lifetime for 
the bounded quasi-stationary state and Im[ ෥߱(ω)] is the 
disintegration probability W per unit time (Landau and 
Lifshitz, 1965). In other words, the calculation of the 
imaginary term empowers a direct evaluation of the 
average lifetime in a particular quasi-stationary state for a 
weak-elastic scattered and doped d-wave HTC 
superconductor.  
 
THE ALGORITHMS  
 
We used two different algorithms to find the numerical 
solution of equation (2): An iterative fixed-point method 
with error differences to find the sought solution for 
෥߱(GCC, the GNU Compiler Collection), and a 
minimization routine based on the nonlinear Levenberg-
Marquardt method (Levenberg, 1944; Marquardt, 1963). 
Both were developed in a C language (Standard C11, 
ISO/IEC 9899:1999 - Programming languages – C), 
which supports complex numbers in a native way, in the 
GCC compiler (GNU Compiler Collection) and the open-
source integrated development environment NetBeans 
IDE.  
 
(A) The fixed-point method  
The fixed-point algorithm (GNU Compiler Collection) 
iterates a maximum number of times max_iter equation 
(2). It evaluates whether the real and complex parts of 
equation (2) are smaller than a specified tolerance TOL 
between two continuous evaluations of the equation. 
When the smaller values are found, it converges and the 
solution is reached. Its performance and solution is 
strongly associated with the “quality” of the initial 
conditions and the dimensions of the parameter space 
involved (c, Γ+) as we conclude in this work.  
 
(B) The Levenberg-Marquardt algorithm  
The Levenberg-Marquardt algorithm (Levenberg, 1944; 
Marquardt, 1963) is an iterative method that solves 
nonlinear quadratic systems through the combination of 
the descending gradient and the Gauss-Newton methods 
by following the behavior of the quadratic error. The 

method provides a solution for the minimization of linear 
complex quadratic systems of equations. This implies that 
the minimization function must have the following special 
form:  
 
(ݔ)݂ = ଵ

ଶ
∑ ௠(ݔ)ଶݎ
௝ୀଵ   (6) 

 
where x = (x1, ..., xm) is a vector, and each rj is a function 
rj: Rn → Rn. rj is known as a residual (it is assumed that m 
≥ n). In this methodology, f(x) is represented as a residual 
vector r such that r: Rn → Rn, where r(x) = (r1(x), ..., 
rm(x)). The derivatives of f(x) are written using a Jacobian 
matrix J. The methodology considers the case where 
every function rj is linear, the Jacobian is constant, and r 
is represented as a hyperplane (a 2D space parameter in 
our case). ∇2f(x) = JJT is given by its quadrature, and it is 
obtained by solving the minimum when ∇f(x) = 0, in such 
a case it is found that xmin = − (JTJ)−1JTr which is the 
solution for normalized equation (2).  
 
Returning to the nonlinear case, we have that the 
distinctive feature of the least-squares problem is that 
given the Jacobian matrix J, the Hessian ∇2f(x) can be 
found. If this is possible, rj are approximated by linear 
functions, where the rj(x) and the rj

2(x) are small and the 
Hessian becomes ∇2f(x) = JTJ that is the same equation 
obtained for the linear case. This common approach 
applies to systems where the residuals rj are small (in our 
case, a 2D (Γ+, c) space parameter).  
 
THE NUMERICAL RESULTS  
 
We begin testing the two algorithms to find a solution for 
equation (2). Immediately it was discovered that although 
the fixed point algorithm has a faster runtime (Table 1), it 
does not manage to differentiate the parameter Γ+, 
obtaining, that no matter the value of Γ+ is, always the 
imaginary part of ෥߱ is very similar for different values of 
Γ+ as shown in Figure 4(a). This result is explained below, 
it means that the curve in Figure 4(b) cannot be 
reproduced with the fixed-point procedure.  
 
On the other hand, the Levenberg-Marquardt nonlinear 
algorithm performs a minimization for equation (2) and 
accurately differentiates small and large values of both the 
parameters: Γ+ and c. Thanks to this algorithm, we are 
able to find the results showed in Figure 4(b). In this 
analysis, Γ+ and c were evaluated for small relative 
numbers that outline two physical regimes: (*) the 
misbehaved ill quasi-particle unitary state (Mineev and 
Samokhin, 1999; Schachinger and Carbotte, 2003; Bad 
metals and the unitary limit); (**) the Born limit where 
the elastic scattering, the free mean path, and the 
quasiparticles states physically are well defined.  
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Subsequently, we analyze transcendental equation (4) that 
represents the dispersion of quasiparticles at ω = 0 and for 
zero temperatures. It is observed in Figure 2 that when c = 
0 and U0 rapidly increases, γ also increases. Moreover, Γ+ 
= 0.3 meV gives the maximum γ value in figure 2, with an 
observed tendency for decreasing Γ+ values. This means 
that for higher impurity concentration, the Cooper pair 
lifetime τ(ω) → 0 decreases faster when c → 0, giving 
that for values c ≤ 0.1 the probability of destroying the 
superconducting state by the impurity is calculated 
correctly. Nonetheless, for γ values with relatively small 
U0 given when c ≥ 0.1, bound states still remain in the 
sample with a small τ(ω). Consequently, the imaginary 
part of the zero-frequency dispersion decays faster, 
implying that the average lifetime increases faster if the 
potential strength is not so small. Figure 2 should be 
compared with the reference figure 4 bottom frame in 
(Schachinger and Carbotte, 2003). Also, the results shown 
in Figure 2 should be compared with some of the results 
obtained in (Puchkaryov and Maki, 1998).  
 
Table 1. The runtime for the complex fixed-point and 
minimization algorithms to calculate ෥߱(ω). The table 
summarizes the data processing of both algorithms for a 
computer architecture with a 64-bit Intel I5 processor and 
an 8 GB RAM in a Slackware 14.2 OS (Slackware Linux 
Project).  
Method  Running performance  
Self-consistent method  24 seconds  
Minimization method  15 minutes and 24 

seconds  
 
As a next step, we display the 3D figure of transcendental 
equation (4), γ(Γ+, c) in figure 3. We limit our discussion 
to places near the location of the minimum gap nodes at 
zero temperatures. So, in this neighborhood there are still 
ill-defined quasiparticles. We want to pursue the 
discussion by Landau and Lifshitz concerning the 
resonance spectrum of quasiparticles at quasi-discrete 
levels by quoting their own words (Landau and Lifshitz, 
1965): It may happen, however, that the disintegration 
probability W of the system is very small. The simplest 
example of this kind is given by a particle surrounded by 
a fairly high and wide potential barrier. For such systems 
with a small disintegration probability, we can introduce 
the concept of quasi-stationary states, in which the 
particles move “inside the system” for a considerable 
period of time, leaving it only when a fairly long time 
interval τ has elapsed; τ may be called the lifetime of the 
almost stationary state concerned (τ∼ l/W, where W is the 
disintegration probability per unit time). The energy 
spectrum of these states will be quasi-discrete; it consists 
of a series of broadened levels, whose “width” is related 
to the lifetime by τ∼ћ/Γ. The widths of the quasi-discrete 
levels are small compared with the distances between 
them.  

It can be also seen in Figure 3 that for a zero value of Γ+, 
no matter what the value of the strength c∼ 1/U0 is, a 
straight zero horizontal axis line γ(Γ+ = 0, 0 ≤ c ≤ 1) can 
exist even when the imaginary part disappears and the 
scattering phenomenon losses any physical meaning. 
According to our interpretation, it doesn’t imply that the 
quasiparticles lifetime τ(0) is infinite, just its physically 
nonentity.  
 

 
Fig. 2. The transcend equation γ(c) as a function of the 
strength related parameter c for five different values of the 
concentration related parameter Γ+.  

 
 
Fig. 3. The sketch of the imaginary part γ(Γ+, c) as a 
continuous 3D function of c and Γ+. The green and red 
neighborhoods show the smallest lifetimes τ(0), and the 
dark blue part shows the region with the biggest τ(0) 
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value. This picture was obtained for gap values that are 
closed to the nodes of Figure 1.  
 
As soon as small finite values of the impurities 
concentration appears (Γ+∼nimp), the 3D manifold 
emerges (Fig. 3) with the maximum value for the γ(Γ+, c) 
surface in the neighborhood of the point with γ(Γ+ = 1, c = 
0) and a gap value of Δ0 = 0, γi = 1, and γ(Γ+ = 1, c = 0) = 
π. At this point, we find the smallest lifetime τ(0) in the 
unitary regime and ω = 0 (the red color neighborhood on 
the right side in figure 3). However, for the values around 
the point γ(Γ+ = 1, c = 1) = 1.57, smaller γ means that a 
bigger lifetime τ(0) exist with ω = 0, corresponding to a 
Born scattering with some remaining ill-quasiparticles 
states (the green color neighborhood on the left side in 
Figure 3). Another case of interest is when ෥߱≠ 0 has a 
constant value and the 3D manifold γ(0 ≤ Γ+ ≤ 1, c = 0) 
converts into a 2D straight line ෥߱ = ω − iγ(Γ+, c = 0). In 
this case, ω ≠ 0 has a very large potential (and a greater 
slope), with Γ+ equivalent to the Landau-Lifshitz 
parameter Γ mentioned in their book on Quantum 
Mechanics (Landau and Lifshitz, 1965), Chapter XVII, 
section 132, equation 132.1 that resembles the unitary 
limit. Finally, in Figure 3 there is another case at ෥߱ = ω − 
iγ(Γ+, c = 1), with a straight line of smaller slope, 
corresponding to a Born limit with ω ≠ 0 and a very small 
potential (Landau and Lifshitz, 1965). The case when Δ ≠ 
0 we will analyze in the future because here our 
discussion follows a zero-temperature approach.  
 
Following the analysis, we calculate equation (2) 
corresponding to the self-frequency consistent ෥߱ using the 
minimization algorithm. This equation contains the 
inverse of the average lifetime states for the quasiparticles 
bound to the impurity (Mineev and Samokhin, 1999; 
Schachinger and Carbotte, 2003; Hirschfeld et al., 1988). 
The top and bottom frames in Figures 4(a) and 4(b) 
respectively show that two physical limits are well 
established from the imaginary part of ෥߱: the Born and 
the unitary regimes.  
 
In both cases, the figures display the unitary regime with 
the strength parameter interaction at c = 0 in black color. 
In such a case, the imaginary part of the frequency (the 
disintegration probability per unit time) Im[ ෥߱(ω)] has a 
maximum at zero frequency ω = 0. This physically shows 
that the magnitude of the scatter potential U0 is strong 
enough to immediately break the bound state of the 
Cooper pair because c = 1/(πNFU0). Moreover, as the 
interaction parameter c moves away from the unitary limit 
(with τ(0) → 0), the maximum of the disintegration 
probability Im[ ෥߱(ω)] decreases as the parameter c 
increases (the interaction potential U0 decreases) as a 
function of the frequency ω.  
 

With the values of c ≥ 0.2, its observed that the behavior 
is close to the Born limit, for which the value of the 
interaction potential U0 is small in comparison with the 
electronic energy. Therefore, τ(ω) increases. The top 
frame of figure 4 shown in this paper should be compared 
with the figure 1 bottom frame in (Schachinger and 
Carbotte, 2003). It is stated that the bottom frame in 
Figure 4 is showed and discussed here for the first time. 
The bottom part in figure 4 shows that with a very small 
value of Γ+ = 0.001 meV, the disintegration probability 
Im[ ෥߱(ω)] is very small for most of the whole frequency 
range and the maximum Im[ ෥߱(ω)] shifts with a 
pronounced peak to the right values of the frequency ω.  
 

 
Fig. 4. Im[ ෥߱(ω)] vs. ω for small concentrations of 
impurity (bottom-frame b, Γ+ = 0.01 meV) and higher 
concentrations (top-frame a, Γ+ = 0.15 meV) for the 
unitary (c = 0.0), intermediate (c = 0.2), and Born (c = 
0.4) limits.  
 
 
THE SUPERCONDUCTING DENSITY OF STATES  
 
In this section, the DOS results are presented. In 
unconventional superconductors, the order parameter goes 
to zero at some parts of the Fermi surface. Due to this 
fact, the density of states at very low energy arises from 
the vicinity where the nodes of the order parameters are 
located. Well known examples of this are the HTS 
(Annett, 1995). In general, line nodes and point nodes 
give a density of states that varies at the low energy limit 
as ω and ω2, respectively (Mineev and Samokhin, 1999; 
Contreras, 2011).  
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Besides the nodes in the order parameter, scattering from 
non-magnetic impurities also influences the calculation of 
the low energy DOS (Mineev and Samokhin, 1999; 
Puchkaryov and Maki, 1998; Hirschfeld et al., 1988). 
This elastic scattering mechanism leads to the lowering of 
Tc; and therefore, to the suppression of the 
superconducting state. In general, for temperatures much 
smaller than Tc, the effect of having very low 
nonmagnetic impurities concentration can be neglected. It 
is found that only for very low temperatures, the effect of 
impurities becomes important for the unitary limit. 
However, for clean samples, this effect can be neglected 
(Contreras et al., 2014; Hirschfeld et al., 1988).  
 
Therefore, in dirty d-wave (HTS) becomes interesting to 
reconstruct the appearance of normal states at zero 
temperature. Hence, we study the evolution of the gap as 
a function of Γ+. We used the minimization routine 
(Levenberg, 1944; Marquardt, 1963). The DOS for low 
frequencies (ω → 0) is calculated by the following 
expression (Mineev and Samokhin, 1999):  
 
ܰ(߱) = ிܰௌRe[݃( ෥߱(߱))]       (7) 

 
where g( ෥߱(ω)) is given by expression (3), the Fermi 
average < ... >FS in equation (3) is performed over a 
spherical Fermi surface with a polar representation of the 
d-wave gap Δ = Δ0cos(2θ), see in figure 1. 
Experimentally, the value for Δ0 = 24 × (2)1/2 meV 
corresponds to the maximum value obtained by the 
ARPES technique (Schachinger and Carbotte, 2003; 
Palczewski, 2010).  
 
As the fourth result, the figure 5(a) top frame shows the 
unitary limit case with an a c = 0 strength parameter 
(where a single Cooper pair scatters many impurities, and 
nimp is larger (γ = 0.15 meV); it remarkably shows that 
there is a large density of residual states N(0) for higher 
concentrations of impurities Γ+∼nimp (red line) mapping 
the zero frequency ω = 0 DOS unitary behavior. However 
as this concentration decreases an order of magnitude, the 
amount of residual states N(0) also decreases, the black 
line in Figure 5(a). Regardless of this, the same behavior 
persists for both curves, represented by the black and red 
colors corresponding to the unitary regime. The residual 
N(0) existence changes the behavior in the universal limit 
of certain kinetic coefficients such as the thermal 
conductivity κij(T) and the sound attenuation αij(T) 
(Mineev and Samokhin, 1999; Contreras et al., 2004; 
Contreras et al., 2014).  
 
Bottom frame of Figure 5(b) corresponds to the case with 
an intermediate scatter parameter c = 0.2 which represents 
in practice the dispersion due to a single impurity, and the 
bound of the U0 potential with the Cooper pair is 
relatively small (Born limit). We see in Figure 5(b) that 

there is no residual density of states N(0) at zero 
frequency as it was shown in (Schachinger and Carbotte, 
2003) for the HTS d-wave superconductors, and in 
(Hirschfeld et al., 1988) for the heavy fermion 
superconductors. For the calculation of the DOS in this 
work, we use two Γ+ values to test the nonlinear 
minimization technique.  
 

 
Fig. 5. The DOS normalized N(ω)/NF for top bottom-(a) 
unitary regime and low bottom-(b) Born case.  
 
 
CONCLUSION 
 
This study compares and implements two algorithms to 
solve the imaginary nonlinear self-consistent equation for 
෥߱ in nonmagnetic unconventional superconductors. As a 
main conclusion, this work states that the minimization 
algorithm (Levenberg, 1944; Marquardt, 1963) is the 
appropriated numerical procedure to solve ෥߱ in the 
complex field, when the number of varying parameters is 
two, that is to say, the impurity concentration Γ+ and the 
strength parameter c. The cost in time showed in Table 1 
correctly approaches the space parameter minimization 
search accounting for different Γ+ values. On the other 
hand, the self-consistent fixed-point algorithm (GCC, the 
GNU Compiler Collection) only manages to properly 
solve equation (2) for the parameter c (faster according to 
Table 1, however, as Γ+ changes it does not converge). 
That means that the fixed-point method is not suitable for 
a parameter space of dimension d ≥ 2. This result is based 
on the exact reproduction of the imaginary part of ෥߱, as 
well as, the density of superconducting states (DOS) 
previously calculated in (Schachinger and Carbotte, 2003) 
for different values of Γ+.  
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Additionally, it was possible to obtain the inverse of the 
average lifetime τ(ω) and the imaginary part 
(disintegration probability) Im[ ෥߱(ω)] in Figure 4(b) for 
very small impurity concentration values of Γ+ such as Γ+ 
= 0.01 meV. This result offers a relevant approach to 
numerically study the unitary limit regime. To a certain 
extend there are strong experimental evidences that the 
heavy fermions superconductors UPt3 (Lussier et al., 
1996; Hirschfeld et al., 1988) and UPd2Al3 (Scheffler et 
al., 2005) are in the unitary regime. This calculation is not 
reported by Schachinger and Carbotte (2003) (the authors 
did not mention their numerical approach to solve 
equation (2)). Furthermore, this report points out the 
importance of the use of appropriate numerical methods 
such as the minimization procedure (Levenberg, 1944; 
Marquardt, 1963) when studying elastic scattering 
quantum mechanical phenomena (Landau and Lifshitz, 
1965; Bad metals and the unitary limit) with parameter 
space of dimension d ≥ 2.  
 
Finally, this study emphasizes that the physics of the 
unitary regime in superconducting metals needs further 
clarification (bad metals and the unitary limit; Coleman, 
2015) as we stated in the fourth section, where Figure 3 is 
analyzed from a more general quantum mechanical 
approach (the footnote is added in the bibliography) 
(Landau and Lifshitz, 1965; Scheffler et al., 2005; Bad 
metals and the unitary limit).  
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